OFD方法是采用一对频率、尺寸、角度相同的纵波探头进行探伤;一个作为发射探头,另一个作为接收探头,两探头相对位置在焊缝两侧且探头中心在同一直线上,发射探头发射横向纵波,在无缺陷部位接收探头首先按收到直通波,这种波在两个探头间以纵波速度进行传播,然后接收到反射回波(backwave)。如果在工件中存在裂纹缺陷,则在缺陷的两端除普通的反射波外,在缺陷的上下端点,还将分别产生衍射波,其衍射能量耒源于缺陷端部。这两束衍射波号在直通波与底面反射波之间出现。缺陷两端点的信号在时间上将是可分辨的,根据衍射波信号传播的时间差可判定缺陷高度的量值。奥林巴斯旗下代理商哪家无损检测系统集成做得比较好?齿轮箱内窥镜检测公司
涡流阵列(ECA)表面缺陷检测背景:航天飞机的结构框架上包含成千上万个紧固件,因此确保这些紧固件完好无损的工作就变得异常艰巨。常规检测技术一般来说不非常耗时,而且探出率极大的取决于操作人员的熟练技能。使用涡流阵列技术极大地减少了检测时间,提高了检出率。这项解决方案不节省了人力和时间,而且其简洁合理的检测过程还有助于比较大限度地减少错误的发生。特性:节省时间:较常规涡流ECT笔式探头检测快达10倍,较渗透检测快达15倍。无需去除漆层;操作过程更迅速、更简洁。对探头的放置要求不如笔式探头或滑动式探头那么严格。多方位探测。较好的可重复性。吉林叶片检测风电叶片模具为什么要进行加热测试?
超声相控阵检测设备具有以下特点:检测速度快。由于探针中的阵列芯片是用电子方法激发的,所以线性扫描比传统的机械扫描要快得多。灵活使用。相控阵探头可以任意控制聚焦深度、偏转角度和光束宽度。另外,用于纵向、横向和斜向损伤检测的相控阵探头也是同类探头。探伤时,可根据需要任意设置扫描方式,实现对钢管不同方位缺陷的检测。不同检测方式可灵活切换,无需任何机械变换和调整。可靠的检测。在传统的钢管超声波探伤中,沿钢管轴向布置的探头在理论上存在重复性差和漏检的可能性,而斜探头在检测斜向缺陷时只对某一固定方位缺陷敏感。多片相控阵探头的辐射声场等效于单片机探头的连续机械位移和转向,避免了横向和斜向损伤的漏检,提高了检测的可靠性。
这种管线检测面临着两种主要挑战。一种挑战是焊料和堆焊层都是与主体不同的异种材料,另一种挑战是部件的厚度(95毫米)。使用常规横波技术很难对异种材料进行检测。当声束在含有焊缝的部件中传播时,两种不同金属的交界面以及焊缝材料的粗晶结构都会引起超声波的反射(反向散射)和折射。这种情况反过来又会导致超声波出现偏斜、离散和衰减的现象。除了材料不同的问题之外,较厚的部件也会为检测提出某些特定的挑战。在检测较厚的部件时,需要将更多的声能传播到部件中,以获得质量的检出率和准确的读数。无损检测证书有哪几类?
根据材料,焊缝结构和探针参数的不同,表面波可以检查探针前面的前几毫米。如果认为该距离足够,则可以在不卸下焊帽的情况下进行检查。但是,在需要时,必须冲掉焊帽,并可能在焊缝自身顶部进行第二次扫描,以确保完全覆盖中心线。产生纵向波意味着还产生了剪切波。电子聚焦和探头选择为特定类型的检查选择正确的相控阵探头的然后考虑因素是探头孔径,以及通过电子聚焦来改变光斑尺寸的需求。当需要良好的灵敏度和良好的定型能力时,超声相控阵技术可提供重要的好处,例如控制UT光束的光斑尺寸。根据材料的厚度,减小或增大光点尺寸有助于在感兴趣的深度处获得比较大的灵敏度。无损检测需要注意些什么呢?主轴探伤检测技术
如何做好风电叶片缺陷的检测工作?齿轮箱内窥镜检测公司
透过厚涂层进行扫查:另一种可以透过非导电性厚涂层,扫查紧固件的探头型号为SEB-064-005-032。虽然这款探头不像SBBR-026-300-032款探头可以提供高分辨率,但是其低频范围(0.5~50kHz)和较大的线圈可以通过较厚的非导电性涂层进行扫查,如:漆层,标签或橡胶层。因其覆盖范围宽泛(64毫米),因此一次扫查两排紧固件。此外,对裂纹的方向没有特殊规定,因为这款探头可以进行多方位扫查。做到了对此类问题很好的解决。如有需求可以致电斌瑞。齿轮箱内窥镜检测公司